Offshore wind farm wake modelling using deep feed forward neural networks for active yaw control and layout optimisation

Author:

Anagnostopoulos S,Piggott MD

Abstract

Abstract Offshore wind farm modelling has been an area of rapidly increasing interest over the last two decades, with numerous analytical as well as computational-based approaches developed, in an attempt to produce designs that improve wind farm efficiency in power production. This work presents a Machine Learning (ML) framework for the rapid modelling of wind farm flow fields, using a Deep Neural Network (DNN) neural network architecture, trained here on approximate turbine wake fields, calculated on the state-of-the-art wind farm modelling software FLORIS. The constructed neural model is capable of accurately reproducing single wake deficits at hub-level for a 5MW wind turbine under yaw and a wide range of inlet hub speed and turbulence intensity conditions, at least an order of magnitude faster than the analytical wake-based solution method, yielding results with 1.5% mean absolute error. A superposition algorithm is also developed to construct flow fields over the whole wind farm domain by superimposing individual wakes. A promising advantage of the present approach is that its performance and accuracy are expected to increase even further when trained on high-fidelity CFD or real-world data through transfer learning, while its computational cost remains low.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference41 articles.

1. The aerodynamics of the curled wake: a simplified model in view of flow control;Martinez-Tossas;WindEnerg. Sci.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3