Parameter Estimation Processor for K-distribution Clutter Based on Deep Learning

Author:

Zhang Liang,Yang Wei,Zhi Shuaifeng,Yang Chen

Abstract

Abstract This paper concerns the problem of parameter estimating of K-distribution. In previous work only the shape parameter of K-distribution is estimated from which the scale parameter is calculated. Therefore, the accuracy of the estimated scale parameter is largely determined by the accuracy of shape parameter estimation. In order to decouple the estimation of scale and shape parameters, in this work, deep learning is considered as the main tool to achieve K-distribution parameters estimation as a regression task. Specifically, a parameter estimation processor combining CNN with LSTM is constructed. The ground truth of the two parameters are taken as labels, and the weighted losses of the two parameters construct the total loss function of the network training. The effectiveness and superiority of the proposed estimation processor are verified on the simulated data and the real sea clutter data.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference16 articles.

1. Structures for radar detection in compound Gaussian clutter;Sangston;IEEE Trans. Aerosp. Electron. Syst.,1999

2. Improved Shape Parameter Estimation in K Clutter with Neural Networks and Deep Learning;Fernández;Int. J. Interact. Multi.,2016

3. Wideband Radar Target Detection Theory in Coherent K Distributed Clutter;Meng;Res. J. Appl. Sci., Eng. Technol.,2013

4. Arma Model Based Clutter Estimation and its Effect on Clutter Supression Algorithms;Tanriverdi,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3