Application of UAV path planning based on parameter optimization GA-PSO fusion algorithm

Author:

Lin Chaoxiong,Zhang Xuecong

Abstract

Abstract Aiming at the complexity of the unmanned aerial vehicle (UAV) path planning problem and the great influence of genetic algorithm parameters on the stability of the results, a fusion algorithm based on parameter optimization is proposed in this paper. In the iterative process, the GA-PSO fusion algorithm uses particle swarm optimization algorithm to search the optimal value of crossover rate and mutation rate in genetic algorithm, which makes the algorithm convergence speed is fast and search ability is strong. In addition, the core part of the algorithm fusion framework is realized by introducing the optimal adaptive value of the population after crossover and mutation as the adaptive value of the parameter particle. Finally, we design two groups of experiments and compare the proposed fusion algorithm with the classical particle swarm optimization algorithm (PSO), ant colony algorithm (ACA), genetic algorithm (GA), artificial fish swarm algorithm (AFSA), Wolf pack algorithm (WPA), artificial bee colony algorithm (ABC) and the improved algorithm through experimental simulation. The experimental results show that: In general, the path planned by the GA-PSO fusion algorithm in this paper is 10% shorter than that planned by other algorithms on average. Simulation results also show that the convergence speed of the fusion algorithm in this paper is faster, and the final search path is smoother.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference16 articles.

1. Survey on technology of mobile robot path planning;Zhu;J. Control and Decision.,2010

2. The development situation and prospect of agricultural UAV in China;Yang;J. Journal of Agricultural Mechanization Research.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3