Abstract
Abstract
In order to achieve the high-performance control position sensorless vector control of synchronous reluctance motor (SynRM), this paper investigated its running-up performance and capability at zero or low speed range. The contribution of this paper mainly includes two parts. Firstly, it takes cross-saturation effect into consideration, Secondly, the paper improves the control stiffness and reliability under low-speed sensorless operation condition by adopting the pulsating sinusoidal high frequency voltage injection snesorless method. By injecting high-frequency voltage excitation signal, the rotor position is estimated from the high-frequency response current. The simulation results verified the feasibility of the control algorithm, and fulfilled the running-up of the SynRM at zero speed, the capability of stability is evaluated via simulation results.
Subject
General Physics and Astronomy