Analysis of flow characteristics in pumped storage unit during start-up in turbine mode

Author:

Liu Tao,Wang Chao,Chen Zhiming,Chen Funan,Bi Huili,Luo Yongyao,Wang Zhengwei

Abstract

Abstract During the start-up, the unit enters into speed-no-load from static state. The runner is full of complex vortex, which hinders the water flow into the runner, and even leads to the failure of starting up. It is necessary to study the vortex and flow state to evaluate the stability of start-up. In this paper, the coupling method of one-dimensional pipeline system and three-dimensional flow inside the unit is used to simulate the startup process and analyse the three-dimensional flow state in runner. The flow instability during the start-up process is deeply studied by analysing the pressure distribution, streamline and turbulent kinetic energy. The results show that the turbulence intensity in the runner decreases with the increase of discharge. During start-up, the vortices in the runner occupy the whole blade passage, and then disappear. With the decrease of discharge, the turbulent kinetic energy at the runner inlet rises and small vortex appears at runner inlet.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. Vibration Behavior and Dynamic Stress of Runners of Very High Head Reversible Pump-turbines;Tanaka,1990

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3