Numerical Design of RF Antennas for Ion Cyclotron Resonance Heating in ECRIS Environment

Author:

Mauro G. S.,Torrisi G.,Pidatella A.,Galatá A.,Mascali D.

Abstract

Abstract In this paper we present the numerical design and simulation of RF antennas to be employed in Ion Cyclotron Resonance Heating (ICRH) systems working in ECRIS environment. A 3D full-wave numerical model, based on the coupling between COMSOL FEM solution of Maxwell equations and the MATLAB-computed non-homogeneous plasma dielectric tensor, has been employed in order to study the performances of several ICRH antennas. Results in terms of S-parameters, on-axis electric field and RF absorbed power inside the plasma chamber have been obtained and compared between the chosen antenna geometries. The presented study will permit to better understand the fundamental aspects of ion dynamics in ECRISs as well as allowing the design of a proper matching network between the RF amplifier and the antenna, necessary to cope with the plasma properties’ fast variations. Further ion kinetic simulations are ongoing.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. Review of tokamak plasma heating by wave damping in the ion cyclotron range of frequency;Adam;Plasma Physics and Controlled Fusion,1987

2. Analysis of the separation of gadolinium isotopes by the icr method;Potanin;Plasma Physics Reports,2008

3. Helicon antenna radiation patterns in a high-density hydrogen linear plasma device;Caneses;Physics of Plasmas,2017

4. Bi-directional excitation of radio frequency waves using a helical antenna in non-uniform plasmas towards a compact magnetoplasma thruster;Yasaka;Open Journal of Applied Science,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nuclear physics midterm plan at LNS;The European Physical Journal Plus;2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3