Assessment of the asphalt mixtures properties subjected to a flexural strength

Author:

Ruge J C,Rondon-Quintana H A,Bastidas-Martínez J G

Abstract

Abstract Fatigue cracking by loading is one of the main mechanisms of damage to asphalt mixtures in service. Several studies worldwide have been conducted to try to understand the response that hot-mix asphalt undergo under this mechanism of damage. Despite the above, the fatigue phenomenon in asphalt mixtures is still not fully understood. The current research hypothesizes that the response under repeated loading of asphalt mixtures in fatigue tests can be more clearly understood through the one obtained under monotonic loading. For this reason, this study presents the results of the first phase of the research in which beams of asphalt mixtures were subjected to flexion using monotonic loads. The above, to correlate the evaluated properties with those obtained in a second phase where the response of the beams under repeated load (fatigue) will be measured. Beams made of two hot-mix asphalt mixes, two asphalt contents, and two different thicknesses were subjected to flexural strength tests. From the tests, the modulus of rupture, the maximum monotonic load that supports the beams in the failure state, the displacement in the failure state, and the relation between load and displacement were obtained. As a general conclusion of the study, it was obtained that the response experienced by the beams subjected to monotonic load has a broad correlation with the reported in the reference literature.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference38 articles.

1. A unified method for the analysis of controlledstrain and controlled-stress fatigue testing;Masad;International Journal of Pavement Engineering,2008

2. Fatigue behavior of SMA and HMA mixtures;Nejad;Construction and Building Materials,2010

3. Fatigue performance of geosyntheticreinforced asphalt concrete beams;Sudarsanan;Journal of Materials in Civil Engineering,2020

4. Asphalt Mixture Fatigue Testing;Li;Influence of Test Type and Specimen Size,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3