Structure and microstructure behavior of iron doped potassium sodium niobate powders

Author:

Amaya-Zabala S,Echavarría-Isaza A,Tobon J,Roca R,Londoño-Badillo F A

Abstract

Abstract In this paper, the synthesis and characterization of the potassium sodium niobate doped with iron powders have been studied. Solid-state oxide reaction sintering was used. The powders produced in this work exhibit no homogeneous microstructure, which introduced the growth of random cylindrical structures and will can contribute to the increased porosity ceramics. It was observed average particle size of 3μm, besides, also it was observed the formation of agglomerations and an increase in the size of these clusters with the increase in the amount of iron. The calcination temperature was 950 °C. This is slightly higher than other potassium sodium niobate powders systems. In addition to the physical and microstructural properties, structural properties are presented and analyzed for the first-time using Mössbauer spectroscopy as complementary technique in Fe 3+doped potassium sodium niobate powders. This work is important to state solid physics because establishes the influence of iron in the potassium sodium niobate system, and so the future obtaining of multifunctional materials that have piezoelectric and magnetic properties.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3