Condensation performance of superhydrophobic aluminium surface material used for cooled ceiling panels under highly humid indoor conditions

Author:

Zhong Z W,Niu J L,Ma W,Yao S H,Yang M,Wang Z K

Abstract

Abstract The application of radiant cooling systems is very limited in hot and humid areas due to condensation. Research on superhydrophobic surface (SHS) materials has shown the potential of restricting the size of condensate drops on these materials, which provides possibilities for preventing dripping and thereby alleviating condensation risks for cooled ceiling panels, but there are few studies on the anti-condensation performance of these materials under the scale and conditions of building applications. An experimental study of condensation on superhydrophobic materials under indoor conditions is presented in this article. Two material samples with a size of 2.5 cm, including a superhydrophobic aluminum sheet and a pure aluminium sheet, were affixed on a cooled ceiling panel to perform the experiment under the following condition: temperature is 25°C ± 0.5°C, relative humidity is 80% ± 5%, and air dew point is 21.4°C. The panel was cooled by chilled water of 6°C for eight hours. The measured temperature on sample surfaces was about 13.5°C during the experiment. After eight-hour condensation, the diameter of drops on the superhydrophobic aluminum sheet was less than 150 μm, while the max drop on the pure aluminum sheet was near 4 mm. The results suggested that the size of condensate drops on superhydrophobic surface materials can be largely restricted during a long-time indoor operation below the dew point, which shows their potential for constructing condensation-free radiant cooling panels.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference26 articles.

1. Energy saving possibilities with cooled-ceiling systems;Niu;Energy and buildings,1995

2. Ten questions about radiant heating and cooling systems;Rhee;Building and Environment,2017

3. Chilled ceilings in parallel with dedicated outdoor air systems: Addressing the concerns of condensation, capacity, and cost;Mumma;Ashrae Transactions,2002

4. Chilled ceiling condensation control;Mumma;ASHRAE IAQ Applications,2003

5. Selecting the supply air conditions for a dedicated outdoor air system working in parallel with distributed sensible cooling terminal equipment/Discussion;Shank;ASHRAE Transactions,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3