Energy saving magnets for beam lines

Author:

Rossi L.,Mariotto S.,Sorti S.

Abstract

Abstract Beam lines magnets for high rigidity particles can have a large power dissipation. In presence of a high duty cycle, this translates in a considerable amount of energy waste. The call for sustainability of large research infrastructures, like particle accelerator centers, and the recent increase of the cost of energy, require to take measures to reduce the energy consumption, even at cost of moderate investment. A study program called ESABLIM (Energy SAving Beam LIne Magnets) has been set up at the LASA lab of University and INFN Milano, aimed at revamping existing normal-conducting magnets for beam lines with the target of cutting the peak power by a factor 10 to 20 and reducing the energy consumption by factor 5 or more. The idea is to replace the water cooled coils of iron-dominated magnets with new superconducting coils cooled at 10-20 K by means of a cryocooler, while to reusing the iron yoke pole assembly. We envisage using MgB2 for its moderate cost, however, high temperature superconductors (HTS) will also be considered as conductor. We present the first advanced design for revamping of a large bending dipole in a hadron therapy center, and the conceptual design for magnets in a nuclear physics laboratory and we try to define the domain where this transformation of normal-conducting into super-ferric magnets can be technically and economically advantageous.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3