Electrical treeing behavior in XLPE insulation due to content AL2O3 nanoparticles

Author:

Mohamed T J,Faraj S R,Judran H K

Abstract

Abstract XLPE is currently commonly used in high voltage underground cables. Several researchers recently chose several nanofillers to improve the electric tree’s strength in the polymer matrix. Alumina AL2O3 nanofiller have been utilized to investigate the effects on the electrical treeing in XLPE. The percentage concentration were used as follows with different amounts “0.3wt.” % and “1wt.”% from weight of base material. The needle-plane electrodes were used in this investigation and gap selected between needle and plane earth is 3 mm. The growth and morphology of treeing in XLPE insulation have been observed by using charge coupled device camera CCDc and microscope system. Scanning of electron microscopes SEM has been investigated the nanoparticles spread in base material. The outcomes show the tree inception voltage TIV values 12.5, and 14.8 KV “0.3wt.” % and “1wt.”%, respectively in XLPE composites that is mean the TIV increase with increase concentration nanofiller, while the tree propagation time at 2mm length increase about 40 min and 2 hours in “0.3wt.” % and “1wt.”% AL2O3/XLPE, respectively compared with unfilled XLPE, as well as the breakdown time BDT enhancement by4.347% and 13.043% for 0.3wt% and 1 wt% nano AL2O3 composites compared with unfilled XLPE insulation. And showed pictures taken with a SEM Diffusion and accumulation of nanoparticles in the XLPE material.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Influence of silica nanoparticle surface treatments on the water treeing characteristics of low density polyethylene;Huang,2009

2. Study of montmorillonite on morphology and water treeing behavior in crosslinking polyethylene;Li,2011

3. Propagation mechanism of electrical tree in XLPE cable insulation by investigating a double electrical tree structure;Zheng;IEEE Trans. Dielectr. Electr. Insul.,2008

4. Dielectric properties of XLPE/SiO2 nanocomposites based on CIGRE WG D1.24 cooperative test results;Tanaka;IEEE Trans. Dielectr. Electr. Insul.,2011

5. Effect of tree channel conductivity on electrical tree shape and breakdown in XLPE cable insulation samples;Chen;IEEE Trans. Dielectr. Electr. Insul.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3