Reliability Analysis and Optimization for the Brake Drum

Author:

Zhang Jingdong,Zheng Bin,Li Zhigang,Yang Zhuo

Abstract

Abstract In order to research the static and dynamic characteristics of drum brake in the braking process and avoid resonance, it is necessary to carry out static analysis and modal analysis of drum brake. By establishing the three-dimensional model of the brake drum and imported to ANSYS for static analysis, the maximum equivalent stress and maximum deformation of the brake drum are obtained. The first, second and third natural frequencies and modal vibration shapes of the brake drum are obtained by modal analysis. Four dimensional parameters are selected as design variables, and the sensitivity is carried out by using experimental design. Taking the maximum deformation, first natural frequency, second natural frequency and mass of the brake drum as the objective function, the multi-objective optimization algorithm is used to optimize the design variables. Based on the optimization design, the six sigma reliability analysis of the brake drum is carried out, and the six sigma reliability analysis method is given in detail. The cumulative distribution graph of the maximum deformation, first natural frequency, second natural frequency and mass of the brake drum are obtained. The analysis results show that the reliability of the brake drum is close to 100%, and then it is judged that the brake drum has high reliability. The research results provide a reference basis for structural reliability analysis.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference7 articles.

1. Modal analysis and topology optimization of drum brake hoof based on ANSYS Workbench [J];Shuaipeng;Coal Mine Machinery,2016

2. Thermal-structure coupling characteristics simulation analysis for drum brake [J];Bin;Journal of Chinese Agricultural Mechanization,2019

3. Modal analysis of the key parts in a disc brake [J];Gang,2013

4. Modal analysis of brake shoe on automobile drum type braker [J];Yuyang;Journal of Heilongjiang Institute of Technology,2011

5. Thermal-structure coupling characteristics simulation analysis for drum brake [J];Bin;Journal of Chinese Agricultural Mechanization,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3