Research on Combined Forecasting of Cooling Load Based on Advanced Cuckoo Search and Improved Particle Swarm Optimization

Author:

Zhang Chenchen,Cong Yilin,Tian Ye,Guo Anzhu,Liu Tao,Ma Yongzhi

Abstract

Abstract This study aims to improve the real-time accuracy of cooling load forecasting for heating, ventilating and air-conditioning systems (HVAC). This article takes the cooling load in a study room in Qingdao, China, which has been put into use for the first time, as the research object, and establishes a TRNSYS simulation platform to obtain sufficient load data. After using the mean influence value (MIV) and Spearman correlation coefficient to screen the characteristic variables, a hybrid algorithm (CS-CPSO) based on cuckoo search (CS) and particle swarm optimization (PSO) is proposed. Firstly, the iterative extremum is introduced to PSO, secondly, mechanism of levy random flight to generate random new nest in CS is used to initialize PSO particles adaptively, Finally, the optimization algorithm is applied to optimize the back propagation (BP) and support vector regression (SVR) load training models (WBP, WSVR, RBP, RSVR) of the working day (W) and rest day (R), respectively. The maximum grey correlation coefficient is utilized to establish the both models (CS-CPSO-CW, CS-CPSO-CR) of the working day (W) and rest day (R) based on CS-CPSO. In this way, the forecasting results are optimized and then compared with the regression prediction method. The analysis shows that the accuracy of the optimized BP model and SVR model are improved and fully considering the differences, the accuracy of the cooling load prediction is effectively promoted by separately, optimal selection between the prediction values of advanced models (CS-CPSO-WBP, CS-CPSO-WSVR and CS-CPSO-RBP, CS-CPSO-RSVR) gives full play to each algorithm’s advantages and makes up for their shortcomings, and it greatly increases reliability and improves accuracy, which in turn provides the basis for the optimal plan, control, and operation of the HVAC.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3