Leakage Detection Based on CEEMDAN Analysis for Hydraulic Cylinder Using Acoustic Emission Technique

Author:

Zhang Peng,Chen Xinyuan,Cheng Zhiwen

Abstract

Abstract The early internal leakage fault characteristics in hydraulic cylinder are very weak and vulnerable to environmental noise, which makes the early internal leakage fault detection very difficult. In comparison with internal leakage detection by the pressure signal, internal leakage by Acoustic emission (AE) signal has higher sensitivity and accuracy. So this paper adapts the algorithms combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and auto regressive (AR) spectrum. Comparing with the mean value of first intrinsic mode function (IMF1) instantaneous amplitude based on EEMD, The experimental results verify the proposed algorithms based on CEEMDAN distinguish different internal leakage levels obviously and has better performance.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. A wavelet-based approach for diagnosis of internal leakage in hydraulic actuators using on-line measurements;Goharrizi;Int. J. FluidPower,2010

2. A wavelet-based approach for external leakage detection and isolation from internal leakage in valve-controlled hydraulic actuators;Goharrizi;IEEE Trans. Instrum. Meas,2010

3. Hydraulic actuator leakage fault detection using extended Kalman filter;An;Int. J. Fluid Power,2005

4. Internal leakage detection in hydraulic actuators using empirical mode decomposition and Hilbert spectrum;Goharrizi;IEEE Trans. Instrum. Meas.,2012

5. Featured temporal segmentation method and AdaBoost-BP detector for internal leakage evaluation of a hydraulic cylinder;Li;Measurement,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Hydraulic Cylinder Faults, Diagnostics, and Prognostics;International Journal of Precision Engineering and Manufacturing-Green Technology;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3