Effect of thermal mass of insulated and non-insulated walls on building thermal performance and potential energy saving

Author:

Haj Hussein M,Monna S,Juaidi A,Barlet A,Baba M,Bruneau D

Abstract

Abstract The presented study aims to evaluate the effect of thermal mass in heavyweight construction in residential buildings in Palestine on indoor thermal environment using a building performance simulation tool. The most used residential building types, shapes and sizes were used as typical models for indoor environment performance simulation. The paper used a sensitivity analysis for four different scenarios according to the location of thermal insulation in the wall for two climatic zones, when no heating and cooling was used. The building material’s thermal properties, infiltration, activities, time schedule, electric lighting and glazing selection were based on onsite studies. The results show that the internal thermal mass of the studied buildings influences their thermal performance and future potential energy demand for heating and cooling. Buildings with insulation positioned on the outside, with high thermal mass and high thermal time constant showed the best thermal performance for different climatic zones, whereas buildings without thermal insulation or with insulation from the inside showed the worst thermal performance. The position of thermal insulation will affect potential energy demand for heating and cooling in the residential buildings.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference19 articles.

1. Thermal mass-energy savings potential in residential buildings;Kosny,2001

2. Modelling the thermal energy demand of a Passive-House in the Gulf Region: The impact of thermal insulation;Elsarrag,2012

3. Comparison between predicted and actual energy performance for summer cooling in high-performance residential buildings in the Lombardy region (Italy);Dall’O’;Energy and Buildings,2012

4. Envelope-related energy demand: A design indicator of energy performance for residential buildings in early design stages;Vasco;Energy and Buildings,2013

5. Thermal adaptive models in the residential buildings in different climate zones of Eastern China;Yan;Energy and Buildings,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3