Analysis of eigenmodes in a swirling jet and flame: 3D PIV and PLIF study

Author:

Abdurakipov S,Lobasov A,Chikishev L,Dulin V

Abstract

Abstract The existence of spiral structures was directly confirmed experimentally on the basis of 3D Particle Image Velocimetry (PIV) and planar laser-induced fluorescence (PLIF) measurements both in a strongly swirling non-reacting jet and in a fuel-lean premixed methane-air flame. Flows were characterized by the presence of vortex breakdown and precession of the vortex core. The differences in magnitude and spatial distribution of flow eigenmodes with distance from the nozzle are analyzed by using Proper Orthogonal Decomposition (POD) based on Spatial Fourier Transform over azimuthal coordinate. The analysis of flow eigenmodes reveal that for a high-swirl isothermal jet, the vortex core co-existed with the pair of counter-rotating helical vortices, which were located in outer shear layer and inside the recirculation zone. This double-vortex helical structure was also detected in a swirling flame, but its magnitude was suppressed compared with isothermal flow. It was determined that the change in the shape of the chemical reaction area was associated with two types of large-scale coherent structures: nearly axisymmetric mode m = 0 of the flame front deformation, presumably due to the effect of buoyancy forces on the combustion products, and the quasi-solid rotation of the asymmetric global mode |m| = 1 in the form of double-vortex structure due to precession of the swirling flow. It was shown that the energy of the axisymmetric mode m = 0 in a reacting jet increased downstream by almost 10 %, unlike other modes, whose energy was only diminished.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3