Given a wingspan, which windplane design maximizes power?

Author:

Trevisi Filippo,Croce Alessandro

Abstract

Abstract Windplanes (i.e. Fly-Gen airborne wind energy systems) harvest wind power via the turbines placed on the tethered wing, which flies crosswind trajectories. In this paper, the optimal design of windplanes is investigated with simplified models, enabling an intuitive understanding of their physical characteristics. The windplane is then idealized as a point mass flying circular fully crosswind trajectories. If the gravity is neglected, the dynamic problem is axial symmetric and the solution is steady. The generated power can be expressed in non-dimensional form by normalizing it with the wind power passing by a disk with radius the wingspan. Since the reference area is taken to be a function of just the wingspan, looking for the design which maximizes this power coefficient addresses the question ”Given a wingspan, which design maximizes power?”. This is different from the literature, where the design problem is formulated per wing area and not per wingspan. The optimal designs have a finite aspect ratio and operate at the maximum lift-to-drag ratio of the airfoil. Airfoils maximizing the lift-to-drag ratio are then optimal for windplanes. If gravity is included in the model, gravitational potential energy is being exchanged over one revolution. Since this exchange comes with an associated efficiency, the plane mass and the related trajectory radius are designed to reduce the potential energy fluctuating over the loop. However, for decreasing turning radii, the available wind power decreases because the windplane sweeps a lower area. For these two conflicting reasons, the optimal mass is finite.

Publisher

IOP Publishing

Reference17 articles.

1. Crossswind Kite Power;Loyd;Journal of Energy,1980

2. Autonomous Airborne Wind Energy Systems: Accomplishments and Challenges;Fagiano;Annual Review of Control, Robotics, and Autonomous Systems,2022

3. Getting airborne – the need to realise the benefits of airborne wind energy for net zero;Blanch,2022

4. Aerostructural optimization of a morphing wing for airborne wind energy applications;Fasel;Smart Materials and Structures,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3