On-line Monitoring and Data Analysis of Environmental Vibration of High Concrete Dam

Author:

Lv Shengmei

Abstract

Abstract As we all know, our country has actually gradually developed into a country with frequent occurrence of global earthquakes. The global earthquakes in the southwest region are the most serious. The most severe earthquake occurred in parts of the southwest. In short, the seismic performance design of a high dam is reflected under the action of the high dam for a given amount of seismic motion and input load. At present, one of the main technical methods for studying high dam seismic engineering is to use model calculations and experiments on its structural dynamics. Moreover, the earliest dam prototype dynamic experiments in my country only occurred in the 1970s and 1980s, and few people in China conducted experiments on these dams. Although there were already a certain degree of practical results at that time, a batch of valuable materials was obtained. However, no matter from the perspective of safety or the actual effect on vibration, as well as the prototype dynamic measurement and test method of the above-mentioned main dam, it has not been well applied to the current expressway. Therefore, it is necessary to consider finding an alternative original kinetic test method. The purpose of this article is to in-depth study the data analysis and application of the online monitoring system of environmental vibration of reinforced concrete high dams in my country. A new online monitoring system for dam environmental vibration is carried out for simulation experiments. Experimental research shows that the noise frequency of the three detection points of environmental noise and vibration monitoring is basically controlled between 1.5~2.0 hz, while the noise frequency of the detection point of the symmetrical location is relatively close.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Research on On-line Monitoring and Regulation Technology of Pressure of High Voltage Transformer;Fan;IOP Conference Series: Earth and Environmental Science,2020

2. Research on Vibration Characteristics and Stress Analysis of Gearbox Housing in High-Speed Trains;Wu,2019

3. Field Monitoring and Numerical Analysis of Large-Span Three-Sided Reinforced Concrete Culvert;Ramadan;Journal of Geotechnical and Geoenvironmental Engineering,2021

4. Quantification of the effects of audible rattle and source type on the human response to environmental vibration;Woodcock;Journal of the Acoustical Society of America,2016

5. Prototype observation and influencing factors of environmental vibration induced by flood discharge;Water Science and Engineering,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3