Coupling Oil Increase by Coal Liquefaction Residue Pyrolysis and Coal Pyrolysis Depolymerization Based on Big Data

Author:

Tian Bo,Zhang Hao,Liu Jie,Liu Yibin,Yang Chaohe

Abstract

Abstract With the continuous improvement of big data technology, my country’s coal liquefaction technology has also continued to mature, maintaining a stable industrial development. Traditional coal pyrolysis technology for tar production with the purpose of increasing tar production, such as coal hydropyrolysis, has problems such as high cost of pure hydrogen atmosphere and complex process and equipment operations, which severely restrict its industrial operation process. Based on this, this paper proposes a new technology of coal pyrolysis and depolymerization coupled with oil increase by using hydrogen precipitated by the condensation polymerization reaction at relatively high temperature under big data technology to study the effect of this process on coal pyrolysis for oil production. Experiments show that at 700°C, the tar yield reaches 21.5wt.%, which is 6% and 7% higher than the pyrolysis tar yield under the same conditions under hydrogen and nitrogen atmospheres. At 600°C, the methane aromatization reaction is relatively weak, and it can be seen that the tar yield is only slightly higher than that under hydrogen and nitrogen atmospheres. As the temperature of the methane anaerobic aromatization reaction increases, the equilibrium conversion rate increases accordingly. Therefore, as the reaction temperature increases, the tar yield also begins to increase.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3