A Reinforcement Learning framework for Wake Steering of Wind Turbines

Author:

Lye Kjetil Olsen,Tabib Mandar V,Johannessen Kjetil André

Abstract

Abstract Ideally, optimum power for a single turbine is obtained when the wind-turbine is aligned with the wind direction. However in multi-turbine wind-farm set-up, wake effects lead to decreased power production from downstream turbine [1, 2, 3, 4, 5]. Hence, a control strategy based on wake steering involves misalignment of upstream turbines with the wind direction causing their wakes to deflect away from downstream wind turbines needs to be investigated. A great deal of work has been put into dynamically controlling the orientation of the individual wind turbines to maximize the power output of the farm [6, 7, 8, 9]. In the wake-steering based control, the misaligned wind turbines produce less power, while the performance of downstream turbines gets enhanced which increases overall net power gain for the wind power plant. Traditionally, the benefits of wake steering have been demonstrated assuming fixed wind directions (e.g., using high-fidelity modeling). Amongst the most recent techniques, particularly promising is the use of Reinforcement learning (RL), which is a branch of machine learning where models are trained to make decisions based on observations of their environment. It is a flexible framework for devising strategies for solving optimal control problems in a broad range of applications across the sciences. Early attempts at using Reinforcement learning for wake steering have been carried out [7, 8, 9], and show promising results. In practice, however, wake-steering controllers must operate in dynamic wind environments in which the wind conditions are estimated from imperfect measurements. Hence, a reinforcement learning framework is developed in this work for dynamic wind conditions. The results show that the framework is promising, and we compare the deep reinforcement learning approach against a considerably more expensive traditional optimization approach which serves as a good baseline. Future work could include looking at more realistic wake models, steering in the presence of noisy observations, and incorporating weather predictions.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3