Noise mechanisms in a radial fan without volute

Author:

Sanjosé Marlène,Hub Sandra,Lörcher Frieder,Moreau Stéphane

Abstract

Abstract The noise emission of a large radial fan with 7 backward curved blades is investigated. When decreasing the flow rate, the broadband levels below 1 kHz increase and the tones decrease, and a broad hump appears at about 80% of the BPF. The present numerical investigation aims at identifying the mechanism responsible for the broadband hump in the spectra. The configuration is simulated using the Lattice Boltzmann PowerFLOW solver for four flow-rate conditions. The low flow-rate condition is run longer to achieve statistical convergence at low frequencies. The simulations capture reasonably well the acoustic spectra and in particular the broadband hump at lower flow rate. The flow in the fan shows an unsteady flow detachment in some blade passages shed from the leading edge of the blade, while other blade passages experienced a fully detached flow along the whole blade chord. A spectral proper orthogonal decomposition is applied to identify the modal structures of the flow responsible for this mechanism. Several azimuthal modes are obtained from the decomposition for the different frequencies in the acoustic spectra. In addition an axial acoustic mode in the fan bowl is found at a frequency in the broadband hump.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3