Modeling of Wake Effects in Steady State Mixing Plane Simulations of a High Lift Turbine Cascade with Different Combinations of Wake Passing Frequency and Wake Orientation

Author:

Führing A.,Kožulović D.,Bode C.,Franke M.

Abstract

Abstract Due to operation at low Reynolds numbers, low pressure turbines of aircraft engines mostly show large laminar boundary layers and transitional separation bubbles which considerably change their viscous losses when interacting with impinging wakes. The change of loss depends on several wake parameters, among others on wake passing frequency and wake orientation. In the present work, these parameters are expressed in terms of Strouhal number and flow coefficient and their influence is investigated by means of unsteady Reynolds-averaged Navier-Stokes (RANS) simulations. Different combinations of both wake parameters which are typical of aircraft engine conditions, are prescribed upstream of a high lift turbine cascade, while the Reynolds number and Mach number are kept constant. The solver TRACE by DLR and MTU Aero Engines together with the γ − Re Θ transition model by Langtry and Menter has been used. Further, the wake profile is representative for upstream turbine profiles and is prescribed by a correlation framework which has been calibrated in previous work. A newly developed quasi-unsteady wake model (QUWM) is applied in order to model the effects of periodically passing wakes in steady state simulations involving mixing plane interfaces. It is shown that the gap between unsteady and steady state simulations is narrowed significantly by the QUWM while still maintaining quick turnaround times that are crucial in industrial flow solver applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EFFECTS OF EXPLOSIVE STRENGTH TRAINING ON LOWER LIMBS IN TAEKWONDO ATHLETES;Revista Brasileira de Medicina do Esporte;2023

2. STRENGTH TRAINING EFFECTS ON LOWER LIMB EXPLOSIVE POWER IN ATHLETES;Revista Brasileira de Medicina do Esporte;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3