Localization and characterization of rotating noise sources on axial fans by means of an irregularly shaped microphone array

Author:

Amoiridis O,Zamponi R,Zarri A,Christophe J,Schram C

Abstract

Abstract Aerodynamic noise emitted by low-speed axial fans has been receiving increasing attention in various sectors of high societal impact, such as automotive and HVAC systems. In this framework, turbulence interaction, flow non-uniformities, trailing-edge boundary layer fluctuations and blade-tip leakages are different mechanisms generating aeroacoustic sources on the rotating blades and contributing to the overall emitted sound. An accurate localization of the sound sources on the surface of the blade is instrumental in separating and isolating these contributions and, therefore, in designing novel sound mitigation concepts. The main objective of this paper is to present an inexpensive and efficient way to isolate and quantify the noise generating mechanisms on rotating blades by means of a irregularly shaped microphone array. The technique is based on ROtating Source Identifier (ROSI) and has been implemented and validated at the von Karman Institute for Fluid Dynamics (VKI). Simulated benchmark datasets that refer to rotating point sources emitting white noise have been considered for the validation of the method. The accuracy in the source localization and in the source strength reconstruction has been evaluated for a fixed and a variable angular rate. Moreover, the algorithm implementation has been parallelized with the purpose of reducing its computational time, which represents the main drawback of ROSI. Finally, the developed technique has been applied to measure the noise sources generated by a forward-skewed subsonic axial fan operated at maximum efficiency. In this case, it has been possible to successfully localize and characterize the major noise sources on the blades. Although further investigation will be necessary to gain better insight into the topic, the present work constitutes an important step for a better understanding of the physical phenomena occurring in the noise generation of an axial fan.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3