Hybrid Overset-LES Simulations of Noise Reduction Concepts of Loaded Airfoils

Author:

Bernicke P,Akkermans R A D

Abstract

Abstract The noise reduction potential of a loaded airfoil is investigated by means of a novel Overset-LES simulation method. This aerodynamic noise prediction tool solves the compressible Navier-Stokes equations, supplemented with a sub-filter-stress model, in perturbation form over a background flow. The such obtained noise sources are subsequently propagated with wave propagation equations to the far-field (e.g., with the Acoustic Perturbation Equations). This hybrid prediction method is applied to a noise reduction investigation of a loaded airfoil. For this purpose, two geometries are considered, i.e., a reference geometry and a modified geometry with a long-chord slat. The effect of the long-chord slat on the turbulent sound sources is investigated by mainly considering turbulence statistics in the slat cove and shear-layer reattachment location. Moreover, the acoustic far-field propagation revealed the influence of a long-chord slat on the directivity. The slat noise reduction primarily results from the combined effect of the less intense shear-layer instabilities and the larger distance between reattachment location and upper trailing-edge, rather than a shielding effect by the long-chord slat. The predicted noise reduction matches well with values reported in literature.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trailing edge noise reduction using bio-inspired finlets;Journal of Sound and Vibration;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3