Abstract Classification Using Support Vector Machine Algorithm (Case Study: Abstract in a Computer Science Journal)

Author:

Lumbanraja F R,Fitri E,Ardiansyah ,Junaidi A,Prabowo Rizky

Abstract

Abstract Jurnal Komputasi is an online journal written by researchers and published by the Department of Computer Science, University of Lampung. Specific scientific information contained in journals is difficult to find because journals have not been structured and are classified into more specialized categories of computer science. Text mining can convert the shape of a journal into structured by homogeneous data form in it. 144 journal abstracts are collected into one corpus document in CSV format used as a research dataset. Journal abstract classification is done using one of the supervised machine learning methods, namely Support Vector Machine (SVM) so that the classification process is faster than the manual method. The TF-IDF technique is used to transform sentences in the abstract into vector so that they can be modelled with SVM. The classification model will be validated by applying the 10-fold cross validation technique. From these classifications a calculation of the resulting performance will be calculated based on the confusion matrix calculation of the resulting performance will be calculated based on the confusion matrix calculation and the use of 3 SVM kernels. The conclusion based on this research is that there are two factors that affect classification accuracy, that is the number of members between scientific classes that are not balanced and the number of features generated from text mining. The highest accuracy of testing result obtained on the use of 205 features and SVM Linear kernel with a value of 58,3%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

1. Sentiment Analysis in the Sales Review of Indonesian Marketplace by Utilizing Support Vector Machine;Lutfi;Journal of Information Systems Engineering and Business Intelligence,2018

2. Implementasi Stopword Removal untuk Pembangunan Aplikasi Alkitab Berbasis Windows 8;Setiawan;Jurnal EKSIS,2013

3. CERMINE: Automatic Extraction of Structured Metadata from Scientific Literature;Tkaczyk;IJDAR,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3