Cellular automaton for spinor gravity in four dimensions

Author:

Wetterich C

Abstract

Abstract Certain fermionic quantum field theories are equivalent to probabilistic cellular automata, with fermionic occupation numbers associated to bits. We construct an automaton that represents a discrete model of spinor gravity in four dimensions. Local Lorentz symmetry is exact on the discrete level and diffeomorphism symmetry emerges in the naive continuum limit. Our setting could serve as a model for quantum gravity if diffeomorphism symmetry is realized in the true continuum limit and suitable collective fields for vierbein and metric acquire non-vanishing expectation values. The discussion of this interesting specific model reveals may key qualitative features of the continuum limit for probabilistic cellular automata. This limit obtains for a very large number of cells if the probabilistic information is sufficiently smooth. It is associated to coarse graining. The automaton property that every bit configuration is updated at every discrete time step to precisely one new bit configuration does no longer hold on the coarse grained level. A coarse grained configuration of occupation numbers can evolve into many different configurations with certain probabilities. This characteristic feature of quantum field theories can come along with the emergence of continuous space-time symmetries.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3