Shadows of new physics on Dirac materials, analog GUPs and other amusements

Author:

Iorio Alfredo,Ivetić Boris,Mignemi Salvatore,Pais Pablo

Abstract

Abstract We discuss here how, when higher-order effects in the parameter | p | , related to the lattice spacing , are considered, pristine graphene, and other Dirac materials, can be used as tabletop systems where generalized commutation relations are naturally realized. Such generalized algebras of quantization, which lead to generalized versions of the Heisenberg uncertainty principle, are under intense scrutiny these days, as they could manifest a fundamental length scale of spacetime. Despite the efforts and the many intriguing results, there are no experimental signatures of any generalized uncertainty principle (GUP). Therefore, our results here, which tell how to use tabletop physical systems to test certain GUPs in analog experiments, should be of interest to practitioners of quantum gravity. We identify three different energy regimes that we call “layers”, where the physics is still of a Dirac type but within precisely described limits. The higher the energy, the more sensitive the Dirac system becomes to the effects of the lattice. Here such lattice plays the role of a discrete space where the Dirac quasi-particles live. With the goals just illustrated, we had to identify the mapping between the high-energy coordinates, X i , and the low-energy ones, x i , i.e., those measured in the lab. We then obtained three generalized Heisenberg algebras. For two of them we have the noticeable result that X i = x i , and for the third one we obtained an improvement with respect to an earlier work: the generalized coordinates expressed in terms of the standard phase space variables, X i (x, p), and higher order terms.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 30 years in: Quo vadis generalized uncertainty principle?;Classical and Quantum Gravity;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3