Line of sight visibility analysis for foreign object debris detection system

Author:

Fizza G,Idrus S M,Iqbal F,Hassan W H W,Shibagaki N,Kashima K,Hamzah A,Ambran S,Kawanishi T

Abstract

Abstract It is challenging to monitor busy airports’ runway through visual inspection to precisely detect foreign object debris. Currently, many technologies for the detection of foreign object debris are available. It has been investigated that millimeter-wave radar technology’s detection capability can be one of the most effective techniques for detecting foreign object debris as it is weather-resilient. However, the positioning and height of a millimeter-wave radar pole covering the runway area, considering the existing runway infrastructure, are challenging. The task involves finding the appropriate placement and optimum height. This paper presents a novel method of line of sight visibility for placement and height of radar pole using human factor research to ensure that each point on the runway is visible from various heights of the millimeter-wave radar pole to the runway locations. Kuala Lumpur International Airport, Malaysia runway 32L/14R, has used a case study to test the visibility analysis. The visual analytic test’s successful results for different millimeter-wave radar pole locations and viewing heights under a visible and invisible line of sight conditions on the runway have been verified in the field experiment.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Raining Weather Condition Observation for FOD Detection Radar on Airport Environment;2022 4th International Conference on Smart Sensors and Application (ICSSA);2022-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3