Support Vector Machine Tuning for Improving Four-Quadrant Emotion Prediction in Virtual Reality (VR) using Wearable Electrodermography (EDG)

Author:

Bulagang A F,Mountstephens J,Teo J

Abstract

Abstract Electrodermography (EDG) / Galvanic Skin Response (GSR) indicates the psychophysiological of emotion, EDG is an emerging signal used in the field of emotion classification aside from Electroencephalography (EEG) and Electrocardiography (ECG). The Empatica E4 wearable device was used in collecting EDG signals and employed as the method in capturing the test subject’s physiological signal of their skin activity. This experiment had 10 participants that use a Virtual Reality (VR) headset for viewing video stimuli in 360 degrees while collecting the EDG signals. Python with Support Vector Machine (SVM) was used in processing the 10 subjects’ data. This paper aims to compare the accuracy of the SVM experiments with different parameters, different settings based on the data retrieved from the wearable. The emotions were classified into four distinct quadrants with inter-subject classifications yielding an accuracy of 54.3%, and intra-subject classification yielded an accuracy of 57.1% to 99.2%. The presented results show that it is possible to achieve results with higher accuracy when parameter tuning. Hence, promising results were demonstrated for emotion prediction in four quadrants using wearable EDG technology in virtual reality environments. This paper provides two contributions, the use of EDG signals in emotion prediction, and the parameter setting to increase the accuracy for SVM classification.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VR technology used to show the practice of architectural node structure;Journal of Computational Methods in Sciences and Engineering;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3