Gas-Solid Interface Interactions Based on Molecular Dynamics Simulations

Author:

Zongyang Li,Lin Bi,Jianqiang Chen

Abstract

Abstract Gas-solid interface interaction as the key point and difficult point of dilute gas flow, understanding the mechanism of it, to have a clearer understanding of the gas molecules in the solid near-wall surface motion law. This paper combines the molecular dynamics method and particle beam method to simulate the interaction between argon molecules and solid platinum wall surface, to study the scattering law after the collision between gas molecules and solid surface at different incidence angles and the mechanism of energy conversion between them, the results show that the tangential kinetic energy is lost after the collision between gas molecules and wall surface, while the change of normal kinetic energy is determined by the magnitude of the incident velocity; the incident velocity is small, the reflected tangential velocity distribution basically fits the Maxwell reflection distribution when the incident velocity reaches a high speed, and the reflected tangential velocity distribution appears head-and-shoulder or even bimodal distribution, which is helpful for future research on the tangential momentum adaptation coefficient of the scattering nucleus model.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference21 articles.

1. Micro-scale gas flows;Fan;Advances in Mechanics,2002

2. Review of recent development of MEMS speakers;Wang;Micromachines,2021

3. A physical-based gas–surface interaction model for rarefied gas flow simulation;Liang;Journal of Computational Physics,2018

4. A megahertz nanomechanical resonator with room temperature quality factor over a million;Verbridge;Applied Physics Letters,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3