Key frame extraction for Human Action Videos in dynamic spatio-temporal slice clustering

Author:

Sima Mingjun

Abstract

Abstract Detecting representative frames in videos based on human actions is quite challenging because of the combined factors of human pose in action and the background. This paper proposed a key frame extraction algorithm based on dynamic spatio-temporal slice clustering. This algorithm firstly uses the dynamic spatio-temporal slice position selection method based on the human mask heat map to calculate the position of slice to realize the dynamic selection of slice positions, then complete the extraction of spatio-temporal slice images. After clustering the spatio-temporal slice images, this method extracts key frames according to the clustering results. The experimental results prove the validity of spatio-temporal slice location selection method, the proposed algorithm can effectively solve the problems of information redundancy and key information missing in existing methods. We conduct experiments on a challenging human action dataset UCF101 and show that our method can detect key frames with high accuracy.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference17 articles.

1. Boosted key-frame selection and correlated pyramidal motion-feature representation for human action recognition[J];Liu;Pattern Recognition,2013

2. Key frame selection by motion analysis[C];Wlof,1996

3. Multi-keyframe abstraction from videos[C];Li,2011

4. An information theoretic approach to hierarchical clustering combination[J];Elaheh,2015

5. UCF101:a dataset of 101human actions classes from videos in the wild[J];Soomro,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large Model based Sequential Keyframe Extraction for Video Summarization;International Conference on Computing, Machine Learning and Data Science;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3