A Model for the Intelligent Supervision of Production for Industry 4.0

Author:

Klos S,Patalas-Maliszewska J,Tront D

Abstract

Abstract Nowadays, the automation of production processes requires qualified engineering staff; unfortunately, such personnel are in very short supply in all EU countries. This article proposes a concept for a model for the intelligent supervision of production for Industry 4.0., the implementation of which will allow the demand for highly skilled engineering staff to be reduced within a company. An analysis of the literature, dedicated to manufacturing enterprises, regarding the intelligent supervision of production systems, is carried out in the article. It follows, therefore, that the Industry 4.0 concept assumes that mechanisms will be implemented, in production resources, in order to enable preventive measures to be taken, vis-à-vis breakdowns, failures and disruptions to the operation of devices. The need to develop a model for the intelligent supervision of production systems, in the face of challenges within the concept of Industry 4.0, is proposed. This model includes the following elements: (1) a configurator allowing devices to be selected for measuring production parameters, (2) a database for registering production system parameters, (3) Convolutional Neural Networks (CNN), as the prediction algorithm and (4) a knowledge-based structure, including operating procedures and good practices for preventing emergency situations, threats and excessive energy consumption in production systems. The usefulness of this model for predictive maintenance, safety and energy efficiency, vis-à-vis the use of production resources, as well as in support of middle management for decisions taken by employees, is described.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3