Rainfall study based on ARIMA-RBF combined model

Author:

Zhao Jialu,Chen Ruyun,Xin Haiyuan

Abstract

Abstract The traditional differential integrated moving average autoregressive model (ARIMA) has some deviations in the prediction accuracy of monthly rainfall. In this paper, we propose to combine the ARIMA model with the radial basis function neural network (RBF) neural network model to predict the monthly rainfall in Nanchang, Jiangxi Province, using the ARIMA-RBF model. Firstly, the ARIMA model is used to predict the monthly rainfall and calculate its residuals, and then the RBF neural network model is used to approximate and compensate the prediction results of the ARIMA model to correct the final prediction results. The results show that the prediction results of the combined model are better than those of the single ARIMA model and the single RBF neural network model with good accuracy.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. Prediction of Rainfall Using Machine Learning[J];P;International Journal of Recent Technology and Engineering (IJRTE),2020

2. Modeling and Prediction of Rainfall Using Radar Reflectivity Data: A Data-Mining Approach[J];Kusiak;IEEE Transactions on Geoscience and Remote Sensing,2013

3. Option Pricing of Weather Derivatives Based on A Stochastic Daily Rainfall Model with Analogue Year Component[J];Berhane;Heliyon,2020

4. ARIMA Modelling for Forecasting of Rice Production: A Case Study of India[J];Amit;Agricultural Science Digest,2020

5. Autoregressive Moving Average Model and Improved LSTM Neural Network Applied in Epidemic Prediction in Zhejiang Province[J];Lingjie;Journal of Physics: Conference Series,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3