Abstract
Abstract
The need to enforce fermionic antisymmetry in the nuclear many-body problem commonly requires use of single-particle coordinates, defined relative to some fixed origin. To obtain physical operators which nonetheless act on the nuclear many-body system in a Galilean-invariant fashion, thereby avoiding spurious center-of-mass contributions to observables, it is necessary to express these operators with respect to the translational intrinsic frame. Several commonly-encountered operators in nuclear many-body calculations, including the magnetic dipole and electric quadrupole operators (in the impulse approximation) and generators of U(3) and
Sp
(
3
,
R
)
symmetry groups, are bilinear in the coordinates and momenta of the nucleons and, when expressed in intrinsic form, become two-body operators. To work with such operators in a second-quantized many-body calculation, it is necessary to relate three distinct forms: the defining intrinsic-frame expression, an explicitly two-body expression in terms of two-particle relative coordinates, and a decomposition into one-body and separable two-body parts. We establish the relations between these forms, for general (non-scalar and non-isoscalar) operators bilinear in coordinates and momenta.
Subject
Nuclear and High Energy Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献