Applications of emulation and Bayesian methods in heavy-ion physics

Author:

Paquet Jean-FrançoisORCID

Abstract

Abstract Heavy-ion collisions provide a window into the properties of many-body systems of deconfined quarks and gluons. Understanding the collective properties of quarks and gluons is possible by comparing models of heavy-ion collisions to measurements of the distribution of particles produced at the end of the collisions. These model-to-data comparisons are extremely challenging, however, because of the complexity of the models, the large amount of experimental data, and their uncertainties. Bayesian inference provides a rigorous statistical framework to constrain the properties of nuclear matter by systematically comparing models and measurements. This review covers model emulation and Bayesian methods as applied to model-to-data comparisons in heavy-ion collisions. Replacing the model outputs (observables) with Gaussian process emulators is key to the Bayesian approach currently used in the field, and both current uses of emulators and related recent developments are reviewed. The general principles of Bayesian inference are then discussed along with other Bayesian methods, followed by a systematic comparison of seven recent Bayesian analyses that studied quark-gluon plasma properties, such as the shear and bulk viscosities. The latter comparison is used to illustrate sources of differences in analyses, and what it can teach us for future studies.

Funder

Nuclear Physics

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3