Study of incomplete fusion reaction dynamics for the system 14N + 169Tm using the forward Recoil Range distribution technique

Author:

Kumar S,Giri Pankaj KORCID,Kumar RORCID,Yadav Abhishek,Ali Rahbar,Appannababu S,Agarwal Avinash,Mukherjee S,Singh Pushpendra PORCID,Sharma Vijay R,Singh B P,Dutt Sunil

Abstract

Abstract Studies in the past have demonstrated that complete fusion and incomplete fusion (ICF) dynamics are both significant just above the Coulomb barrier, yet the dynamics of ICF are elusive since they are so complex below 10 MeV/nucleon. In order to investigate low-energy ICF dynamics, we measured the forward recoil range distribution (FRRD) of evaporation residues (ERs) populated in the system 14N + 169Tm at energy ≈5.9 MeV/nucleon. A stack target-catcher activation technique followed by offline-γ-spectroscopy was used to estimate the FRRD of the ERs. In order to investigate a new parameter for describing ICF dynamics, the ICF fraction (F ICF(%)) for the present system was estimated from the range-integrated cross-sections and compared with other systems in the literature. The FRRD and range integrated cross-sections of seven ERs have been estimated experimentally. These cross-section results agree well with the experimental results obtained from the excitation functions. On re-investigation of entrance channel systematics for Q α -value of projectile, mass-asymmetry (μ MA), and Coulomb factor (Z P Z T), it has been found that the Q α -value systematic for 14N is not valid at all projectile energies. The FRRD measurement is one of the direct methods available to probe the complete and ICF contributions in ERs at low projectile energy. It has also been observed that the dynamics of ICF are not only dependent on the parameters of one entrance channel but on multiple entrance channels. We have also introduced the entrance channel parameter zeta (ζ) for the first time in ICF reactions to see the combined effect of mass-asymmetry (μ MA) and Z P Z T, as this parameter is better suited than μ MA and Z P Z T individually and has a linear dependency on F ICF(%).

Publisher

IOP Publishing

Subject

Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3