Bayesian inference of the incompressibility, skewness and kurtosis of nuclear matter from empirical pressures in relativistic heavy-ion collisions

Author:

Xie Wen-Jie,Li Bao-AnORCID

Abstract

Abstract Within the Bayesian statistical framework we infer the incompressibility K 0, skewness J 0 and kurtosis Z 0 parameters of symmetric nuclear matter (SNM) at its saturation density ρ 0 using the constraining bands on the pressure in cold SNM in the density range of 1.3ρ 0 to 4.5ρ 0 from transport model analyses of kaon production and nuclear collective flow in relativistic heavy-ion collisions. As the default option assuming the K 0, J 0 and Z 0 have Gaussian prior probability distribution functions (PDFs) with the means and variances of 235 ± 30, −200 ± 200 and −146 ± 1728 MeV, their posterior most probable values are narrowed down to 192 16 + 12 MeV, − 180 110 + 100 MeV and 200 250 + 250 at 68% confidence level, respectively. The results are largely independent of the prior PDFs of J 0 and Z 0 used. However, if one adopts the strong belief that the incompressibility K 0 has a uniform prior PDF within its absolute boundary of 220–260 MeV as one can find easily in the literature, the posterior most probable values of K 0, J 0 and Z 0 shift to K 0 = 22 0 0 + 6 MeV, J 0 = 39 0 70 + 60 MeV and Z 0 = 60 0 200 + 200 MeV, respectively. While the posterior PDFs of the SNM EOS parameters depend somewhat on the prior PDF of K 0 used, the results from using different prior PDFs are qualitatively consistent. The uncertainties of all three parameters are significantly reduced especially for the J 0 and Z 0 parameters compared to their current values.

Funder

US Department of Energy

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3