Optimization and supervised machine learning methods for fitting numerical physics models without derivatives *

Author:

Bollapragada RaghuORCID,Menickelly MattORCID,Nazarewicz WitoldORCID,O’Neal JaredORCID,Reinhard Paul-GerhardORCID,Wild Stefan MORCID

Abstract

Abstract We address the calibration of a computationally expensive nuclear physics model for which derivative information with respect to the fit parameters is not readily available. Of particular interest is the performance of optimization-based training algorithms when dozens, rather than millions or more, of training data are available and when the expense of the model places limitations on the number of concurrent model evaluations that can be performed. As a case study, we consider the Fayans energy density functional model, which has characteristics similar to many model fitting and calibration problems in nuclear physics. We analyze hyperparameter tuning considerations and variability associated with stochastic optimization algorithms and illustrate considerations for tuning in different computational settings.

Funder

Office of Science

Nuclear Physics

Publisher

IOP Publishing

Subject

Nuclear and High Energy Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extended Fayans energy density functional: optimization and analysis;Journal of Physics G: Nuclear and Particle Physics;2024-08-21

2. Improved description of nuclear charge radii: Global trends beyond N=28 shell closure;Physical Review C;2024-06-03

3. Stochastic average model methods;Computational Optimization and Applications;2024-04-24

4. Constructing a Simulation Surrogate with Partially Observed Output;Technometrics;2023-06-22

5. Adaptive sampling quasi-Newton methods for zeroth-order stochastic optimization;Mathematical Programming Computation;2023-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3