Towards modeling cluster structure of 8Be with chiral interaction

Author:

Fukui TokuroORCID

Abstract

Abstract How the nuclear force behaves in cluster states, in particular those consisting of the α clusters, has been investigated so far, but not yet elucidated. Today the chiral effective field theory (EFT) is established and it would shed new light on the microscopic understanding of the cluster states. We aim to address a possible source of the attraction in the cluster states of 8Be in view of the pion exchange. Namely, we investigate whether the two-pion-exchange interaction acts as a dominant attraction in the α + α system as predicted by a previous work. We describe theoretically the cluster structure of 8Be by the Brink model, for which the effective interaction is designed from the realistic nuclear force derived through the chiral EFT. The two-body matrix elements of the chiral interaction with the local-Gaussian bases are formulated within the approximation of the spin–isospin saturation forming an α particle. Introducing a global prefactor to the chiral interaction phenomenologically, the ground and low-lying excited states of 8Be, the scattering phase shift of the αα system as well, are satisfactorily depicted. The attraction in the cluster states is found to be stemming from the two-pion-exchange contributions dominantly, along with nonnegligible short-range terms. The present work can be the foundation towards constructing realistic cluster models, by which the cluster states will be revealed microscopically in the next step.

Funder

JSPS

Publisher

IOP Publishing

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clusters in light nuclei: history and recent developments;La Rivista del Nuovo Cimento;2023-09

2. Implementation of chiral two-nucleon forces to nuclear many-body methods with Gaussian-wave packets;Progress of Theoretical and Experimental Physics;2023-07

3. Search for cluster effects in p+12C elastic scattering by a diffractional method;Journal of Physics G: Nuclear and Particle Physics;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3