Ward identities in a two-dimensional gravitational model: anomalous amplitude revisited using a completely regularization-independent mathematical strategy

Author:

Dallabona GORCID,de Oliveira P GORCID,Battistel O A

Abstract

Abstract We present a detailed investigation of the anomalous gravitational amplitude in a simple two-dimensional model with Weyl fermions. We employ a mathematical strategy that completely avoids any regularization prescription for handling divergent perturbative amplitudes. This strategy relies solely on the validity of the linearity of the integration operation and avoids modifying the amplitudes during intermediate calculations, unlike studies using regularization methods. Additionally, we adopt arbitrary routings for internal loop momenta, representing the most general analysis scenario. As expected, we show that surface terms play a crucial role in both preserving the symmetry properties of the amplitude and ensuring the mathematical consistency of the results. Notably, our final perturbative amplitude can be converted into the form obtained using any specific regularization prescription. We consider three common scenarios, one of which recovers the traditional results for gravitational anomalies. However, we demonstrate that this scenario inevitably breaks the linearity of integration, leading to an undesirable mathematical situation. This clean and transparent conclusion, enabled by the general nature of our strategy, would not be apparent in similar studies using regularization techniques.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3