Abstract
Abstract
In this paper, we study the convergence of solutions of the α-Euler equations to solutions of the Euler equations on the two-dimensional torus. In particular, given an initial vorticity ω
0 in
L
x
p
for
p
∈
(
1
,
∞
)
, we prove strong convergence in
L
t
∞
L
x
p
of the vorticities q
α
, solutions of the α-Euler equations, towards a Lagrangian and energy-conserving solution of the Euler equations. Furthermore, if we consider solutions with bounded initial vorticity, we prove a quantitative rate of convergence of q
α
to ω in Lp
, for
p
∈
(
1
,
∞
)
.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Ministero dell’Istruzione, dell’Università e della Ricerca
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung