Convergence analysis of a viscosity parameter recovery algorithm for the 2D Navier–Stokes equations

Author:

Martinez Vincent RORCID

Abstract

Abstract In this paper, the convergence of an algorithm for recovering the unknown kinematic viscosity of a two-dimensional incompressible, viscous fluid is studied. The algorithm of interest is a recursive feedback control-based algorithm that leverages observations that are received continuously-in-time, then dynamically provides updated values of the viscosity at judicious moments. It is shown that in an idealized setup, convergence to the true value of the viscosity can indeed be achieved under a natural and practically verifiable non-degeneracy condition. This appears to be first such result of its kind for parameter estimation of nonlinear partial differential equations. Analysis for two parameter update rules is provided: one which involves instantaneous evaluation in time and the other, averaging in time. The proof of convergence for either rule exploits sensitivity-type bounds in higher-order Sobolev topologies, while the instantaneous version particularly requires delicate energy estimates involving the time-derivative of the sensitivity-type variable. Indeed, a crucial component in the analysis is the identification of a dissipative structure for the time-derivative of the sensitivity-type variable, which ultimately ensures a favorable dependence on the tuning parameter of the algorithm.

Funder

Research Foundation of The City University of New York

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference43 articles.

1. Dynamical state and parameter estimation;Abarbanel;SIAM J. Appl. Dyn. Syst.,2009

2. Estimation of parameters in nonlinear systems using balanced synchronization;Abarbanel;Phys. Rev. E,2008

3. Continuous data assimilation using general interpolant observables;Azouani;J. Nonlinear Sci.,2014

4. Data assimilation for the Navier–Stokes equations using local observables;Biswas;SIAM J. Appl. Dyn. Syst.,2021

5. Higher-order synchronization and a refined paradigm for global interpolant observables;Biswas,2021

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3