Abstract
Abstract
The Q1 lattice equation, a member in the Adler–Bobenko–Suris list of 3D consistent lattices, is investigated. By using the multidimensional consistency, a novel Lax pair for Q1 equation is given, which can be nonlinearized to produce integrable symplectic maps. Consequently, a Riemann theta function expression for the discrete potential is derived with the help of the Baker–Akhiezer functions. This expression leads to the algebro-geometric integration of the Q1 lattice equation, based on the commutativity of discrete phase flows generated from the iteration of integrable symplectic maps.
Funder
Graduate Student Education Research Foundation of Zhengzhou University
National Natural Science Foundation of China
Chinese Scholarship Council
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献