Ground states in spatially discrete non-linear Schrödinger models

Author:

Stefanov Atanas GORCID,Ross Ryan M,Kevrekidis Panayotis GORCID

Abstract

Abstract In the seminal work (Weinstein 1999 Nonlinearity 12 673), Weinstein considered the question of the ground states for discrete Schrödinger equations with power law nonlinearities, posed on Z d . More specifically, he constructed the so-called normalised waves, by minimising the Hamiltonian functional, for fixed power P (i.e. l 2 mass). This type of variational method allows one to claim, in a straightforward manner, set stability for such waves. In this work, we revisit these questions and build upon Weinstein’s work, as well as the innovative variational methods introduced for this problem in (Laedke et al 1994 Phys. Rev. Lett. 73 1055 and Laedke et al 1996 Phys. Rev. E 54 4299) in several directions. First, for the normalised waves, we show that they are in fact spectrally stable as solutions of the corresponding discrete nonlinear Schroedinger equation (NLS) evolution equation. Next, we construct the so-called homogeneous waves, by using a different constrained optimisation problem. Importantly, this construction works for all values of the parameters, e.g. l 2 supercritical problems. We establish a rigorous criterion for stability, which decides the stability on the homogeneous waves, based on the classical Grillakis–Shatah–Strauss/Vakhitov–Kolokolov (GSS/VK) quantity ω φ ω l 2 2 . In addition, we provide some symmetry results for the solitons. Finally, we complement our results with numerical computations, which showcase the full agreement between the conclusion from the GSS/VK criterion vis-á-vis with the linearised problem. In particular, one observes that it is possible for the stability of the wave to change as the spectral parameter ω varies, in contrast with the corresponding continuous NLS model.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3