Asymptotic behaviour for solutions to reaction–diffusion equations on a root-like metric graph *

Author:

Lou Bendong,Morita Yoshihisa

Abstract

Abstract In this paper we consider symmetric solutions of reaction–diffusion equations on an unbounded root-like metric graph. We first prove a version of the zero number diminishing properties on the graph, and then use them to show a convergence result for bounded and symmetric solution of general equations. As application, we provide a complete spreading-transition-vanishing trichotomy result on the asymptotic behaviour for solutions of the bistable reaction–diffusion equation on the graph.

Funder

JSPS

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference21 articles.

1. The zero set of a solution of a parabolic equation;Angenent;J. Reine Angew. Math.,1988

2. Classical solvability of linear parabolic equations on networks;von Below;J. Differ. Equ.,1988

3. A maximum principle for semilinear parabolic network equations;von Below,1991

4. Instability of stationary solutions of reaction-diffusion-equations on graphs;von Below;Results Math.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3