Abstract
Abstract
The time dependent spectral renormalization (TDSR) method was introduced by Cole and Musslimani as a novel way to numerically solve initial boundary value problems. An important and novel aspect of the TDSR scheme is its ability to incorporate physics in the form of conservation laws or dissipation rate equations. However, the method was limited to include a single conserved or dissipative quantity. The present work significantly extends the computational features of the method with the (i) incorporation of multiple conservation laws and/or dissipation rate equations, (ii) ability to enforce versatile boundary conditions, and (iii) higher order time integration strategy. The TDSR method is applied on several prototypical evolution equations of physical significance. Examples include the Korteweg–de Vries, multi-dimensional nonlinear Schrödinger and the Allen–Cahn equations.
Subject
Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献