Global wellposedness of the 3D compressible Navier–Stokes equations with free surface in the maximal regularity class

Author:

Shibata Yoshihiro,Zhang XinORCID

Abstract

Abstract This paper concerns the global well posedness issue of the compressible Navier–Stokes equations (CNS) describing barotropic compressible fluid flow with free surface occupied in the three dimensional exterior domain. Combining the maximal L p -L q estimate and the L p -L q decay estimate of solutions to the linearized equations, we prove the unique existence of global in time solutions in the time weighted maximal L p -L q regularity class for some p > 2 and q > 3. Namely, the solution is bounded as L p in time and L q in space. Compared with the previous results of the free boundary value problem of (CNS) in unbounded domains, we relax the regularity assumption on the initial states, which is the advantage by using the maximal L p -L q regularity framework. On the other hand, the equilibrium state of the moving boundary of the exterior domain is not necessary the sphere. To our knowledge, this paper is the first result on the long time solvability of the free boundary value problem of (CNS) in the exterior domain.

Funder

National Natural Science Foundation of China

Top Global University Project

Fundamental Research Funds for the Central Universities

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3