Periodic solutions of two-dimensional wave equations with x-dependent coefficients and Sturm–Liouville boundary conditions

Author:

Ji Shuguan

Abstract

Abstract This paper considers the periodic solutions of a two-dimensional nonlinear wave equation with x-dependent coefficients v ( x ) y t t ( v ( x ) y x 1 ) x 1 ( v ( x ) y x 2 ) x 2 + β y + g ( y ) = f ( x , t ) , subject to the Sturm–Liouville boundary conditions a 11 y ( 0 , x 2 , t ) b 11 y x 1 ( 0 , x 2 , t ) = 0 , a 12 y ( π , x 2 , t ) + b 12 y x 1 ( π , x 2 , t ) = 0 , a 21 y ( x 1 , 0 , t ) b 21 y x 2 ( x 1 , 0 , t ) = 0 , a 22 y ( x 1 , π , t ) + b 22 y x 2 ( x 1 , π , t ) = 0 , where x = (x 1, x 2) ∈ (0, π) × (0, π), t R and a i j 2 + b i j 2 0 for i, j = 1, 2. Such a model arises from the forced vibrations of a nonhomogeneous membrane and the propagation of waves in nonhomogeneous media. By using the duality principles of Brézis (1983 Bull. Am. Math. Soc. 8 409–26), we first set up the theoretical framework and give an abstract theorem for the existence of periodic solution. Then, by analysing the spectral asymptotic behaviours of the weighted Sturm–Liouville problem and classifying the boundary conditions, we obtain the fundamental properties of the variable coefficients wave operator under appropriate assumptions for different class of boundary conditions. Finally, based on these properties and with the help of the abstract theorem, we establish some results on the existence and regularity of periodic solutions. To the best of our knowledge, the results are entirely new, and this is the first time to obtain such results for the two-dimensional nonlinear wave equation with x-dependent coefficients.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3