Small Darcy number limit of the Navier–Stokes–Darcy system

Author:

Lyu Wenqi,Wang Xiaoming

Abstract

Abstract We study the small Darcy number behavior of the Navier–Stokes–Darcy system with the conservation of mass, Beavers–Joseph–Saffman–Jones condition, and the Lions balance of the normal-force interface boundary conditions imposed on the interface separating the Navier–Stokes flow and Darcy flow. We show that the asymptotic behavior of the coupled system, at small Darcy number, can be captured by two semi-decoupled Darcy number independent sequences: a sequence of (linearized) Navier–Stokes equations, and a sequence of Darcy equations with appropriate initial and boundary data. Approximate solutions to any order of the small parameter (Darcy number) can be constructed via the two sequences. The local in time validity of the asymptotic expansion up to second order is presented. And the global in time convergence is derived under the assumption that the Reynolds number is below a threshold value.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3