Fréchet differentiable drift dependence of Perron–Frobenius and Koopman operators for non-deterministic dynamics

Author:

Koltai Péter,Lie Han Cheng,Plonka Martin

Abstract

Abstract We prove the Fréchet differentiability with respect to the drift of Perron–Frobenius and Koopman operators associated to time-inhomogeneous ordinary stochastic differential equations. This result relies on a similar differentiability result for pathwise expectations of path functionals of the solution of the stochastic differential equation, which we establish using Girsanov’s formula. We demonstrate the significance of our result in the context of dynamical systems and operator theory, by proving continuously differentiable drift dependence of the simple eigen- and singular values and the corresponding eigen- and singular functions of the stochastic Perron–Frobenius and Koopman operators.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference61 articles.

1. On the differentiability of solutions of stochastic evolution equations with respect to their initial values;Andersson;Nonlinear Anal.,2017

2. Study of dynamics in unsteady flows using Koopman mode decomposition;Arbabi;Phys. Rev. Fluids,2018

3. Dynamical zeta functions and dynamical determinants for hyperbolic maps: A functional approach;Baladi,2018

4. Transition manifolds of complex metastable systems;Bittracher;J. Nonlinear Sci.,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3